Hereditary blindness caused by a progressive degeneration of the
light-sensing cells in the eye, the photoreceptors, affects millions of
people worldwide. Although the light-sensing cells are lost, cells in
deeper layers of the retina, which normally cannot sense light, remain
intact. A promising new therapeutic approach based on a technology
termed "optogenetics" is to introduce light-sensing proteins into these
surviving retinal cells, turning them into "replacement photoreceptors"
and thereby restoring vision. However, several factors limit the
feasibility of a clinical optogenetic therapy using traditional
light-sensitive proteins, as they require unnaturally high and
potentially harmful light intensities and employ a foreign signaling
mechanism within the target retinal cells.
New research publishing May 7th in the Open Access journal PLOS Biology
from van Wyk and colleagues demonstrates how optogenetic proteins can
be tailored to bring this promising technology closer to medical
application. "We were asking the question, 'Can we design
light-activatable proteins that gate specific signaling pathways in
specific cells?', in other words, can the natural signaling pathways of
the target cells be retained and just modified in a way to be turned on
by light instead of a neurotransmitter released from a preceding
neuron?" says Dr. Sonja Kleinlogel, corresponding author of the paper
(whose research group is based at the University of Berne, Switzerland).
The aim of molecular engineering was to achieve maximal compatibility
with native signaling whilst retaining all the advantages of traditional
optogenetic proteins, such as fast kinetics and resistance to bleaching
by light.
The novel light-sensing protein, termed Opto-mGluR6, is a chimeric protein composed of the light-sensing domains of the retinal photopigment melanopsin and the ON-bipolar cell-specific metabotropic glutamate receptor mGluR6, which is naturally activated by glutamate released from the photoreceptors and amplifies the incoming signal through a coupled intracellular enzymatic pathway. Unlike rhodopsin, for example, the "light antenna" of melanopsin is resistant to bleaching. In other words, the response strength of Opto-mGluR6 never attenuates, no matter how often and hard the protein is hit by light. Moreover, since Opto-mGluR6 is a chimeric protein consisting of two "local" retinal proteins it is also likely to be "invisible" to the immune system, another improvement over traditional optogenetic proteins.
In their study van Wyk and colleagues targeted the retinal ON-bipolar cells, which naturally receive direct input from the photoreceptors. Targeting the surviving cells at the top end of the visual cascade has the advantage that signal computation of the retina is maximally utilized. Turning the native chemical receptor (mGluR6) into a light-activated receptor ensures conservation of native signaling within the ON-bipolar cells, conferring high light-sensitivity and fast "normal" responsiveness. In their study they show proof-of-principle that mice suffering from Retinitis pigmentosa can be treated to regain daylight vision. "The new therapy can potentially restore sight in patients suffering from any kind of photoreceptor degeneration" says Dr. Kleinlogel, "for example also those suffering from severe forms of age-related macular degeneration, a very common disease that affects to some degree about one in every 10 people over the age of 65."
"The major improvement of the new approach is that patients will be able to see under normal daylight conditions without the need for light intensifiers or image converter goggles" Dr. Kleinlogel further notes "and retaining the integrity of the intracellular enzymatic cascade through which native mGluR6 acts ensures consistency of the visual signal, as the enzymatic cascade is intricately modulated at multiple levels." The mGluR6 receptor of ON-bipolar cells belongs to the large family of so-called G-protein-coupled transmembrane receptors (
GPCRs).
The novel principle of engineering bleach-resistant chimeric Opto-GPCRs
opens a whole palette of new possibilities. For example, as GPCRs are
prime targets for pharmaceutical interventions, Opto-GPCRs could
potentially be used to treat conditions such as pain, depression and
epilepsy.
The novel light-sensing protein, termed Opto-mGluR6, is a chimeric protein composed of the light-sensing domains of the retinal photopigment melanopsin and the ON-bipolar cell-specific metabotropic glutamate receptor mGluR6, which is naturally activated by glutamate released from the photoreceptors and amplifies the incoming signal through a coupled intracellular enzymatic pathway. Unlike rhodopsin, for example, the "light antenna" of melanopsin is resistant to bleaching. In other words, the response strength of Opto-mGluR6 never attenuates, no matter how often and hard the protein is hit by light. Moreover, since Opto-mGluR6 is a chimeric protein consisting of two "local" retinal proteins it is also likely to be "invisible" to the immune system, another improvement over traditional optogenetic proteins.
In their study van Wyk and colleagues targeted the retinal ON-bipolar cells, which naturally receive direct input from the photoreceptors. Targeting the surviving cells at the top end of the visual cascade has the advantage that signal computation of the retina is maximally utilized. Turning the native chemical receptor (mGluR6) into a light-activated receptor ensures conservation of native signaling within the ON-bipolar cells, conferring high light-sensitivity and fast "normal" responsiveness. In their study they show proof-of-principle that mice suffering from Retinitis pigmentosa can be treated to regain daylight vision. "The new therapy can potentially restore sight in patients suffering from any kind of photoreceptor degeneration" says Dr. Kleinlogel, "for example also those suffering from severe forms of age-related macular degeneration, a very common disease that affects to some degree about one in every 10 people over the age of 65."
"The major improvement of the new approach is that patients will be able to see under normal daylight conditions without the need for light intensifiers or image converter goggles" Dr. Kleinlogel further notes "and retaining the integrity of the intracellular enzymatic cascade through which native mGluR6 acts ensures consistency of the visual signal, as the enzymatic cascade is intricately modulated at multiple levels." The mGluR6 receptor of ON-bipolar cells belongs to the large family of so-called G-protein-coupled transmembrane receptors (
Credit: Sonja Kleinlogel
Journal Reference:
- Michiel van Wyk, Justyna Pielecka-Fortuna, Siegrid Löwel, Sonja Kleinlogel. Restoring the ON Switch in Blind Retinas: Opto-mGluR6, a Next-Generation, Cell-Tailored Optogenetic Tool. PLOS Biology, 2015; 13 (5): e1002143 DOI: 10.1371/journal.pbio.1002143
No comments:
Post a Comment