Researchers at the University of Michigan's Life Sciences Institute have
found that amlexanox, an off-patent drug currently prescribed for the
treatment of asthma and other uses, also reverses obesity, diabetes and
fatty liver in mice.
The findings from the lab of Alan Saltiel, the Mary Sue Coleman
director of the Life Sciences Institute, are scheduled to be published
online Feb. 10 in the journal Nature Medicine.
"One of the reasons that diets are so ineffective in producing weight
loss for some people is that their bodies adjust to the reduced
calories by also reducing their metabolism, so that they are 'defending'
their body weight," Saltiel said. "Amlexanox seems to tweak the
metabolic response to excessive calorie storage in mice."
Different formulations of amlexanox are currently prescribed to treat
asthma in Japan and canker sores in the United States. Saltiel is
teaming up with clinical-trial specialists at U-M to test whether
amlexanox will be useful for treating obesity and diabetes in humans. He
is also working with medicinal chemists at U-M to develop a new
compound based on the drug that optimizes its formula.
The study appears to confirm and extend the notion that the genes
IKKE and TBK1 play a crucial role for maintaining metabolic balance, a
discovery published by the Saltiel lab in 2009 in the journal Cell.
"Amlexanox appears to work in mice by inhibiting two genes -- IKKE
and TBK1 -- that we think together act as a sort of brake on
metabolism," Saltiel said. "By releasing the brake, amlexanox seems to
free the metabolic system to burn more, and possibly store less,
energy."
Using high-throughput chemical screening at LSI's Center for Chemical
Genomics to search for compounds that inhibit IKKE and TBK1, the
researchers hit upon an approved off-patent drug: amlexanox. They then
demonstrated that amlexanox had profound beneficial effects in both
genetic and dietary-induced obese mice. The chemical lowered the weight
of obese mice and reversed related metabolic problems such as diabetes
and fatty liver.
"These studies tell us that, at least in mice, the IKKE/TBK1 pathway
plays an important role in defending body weight by increasing storage
and decreasing burning of calories, and that by inhibiting that pathway
with a compound, we can increase metabolism and induce weight loss,
reverse diabetes and reduce fatty liver," Saltiel said.
The drug has been on the market in Japan for more than 25 years.
However, the researchers don't yet know if humans respond with the
same pathway, or if the discovery of amlexanox's effectiveness in mice
can lead to a compound that is safe and effective for treating obesity
and diabetes in humans.
"We will be working hard on that," Saltiel said.
Saltiel's search for a drug targeting the IKKE/TBK1 pathway was
supported by the Life Science Institute's Innovation Partnership, which
provides philanthropic funding and business mentorship to help move
promising research toward commercialization.
The research was also supported by the National Institutes of Health,
the Michigan Diabetes Research and Training Center, the Michigan
Institute for Clinical and Health Research, and the Nathan Shock Center
in the Basic Biology of Aging.
Journal Reference:
- Shannon M Reilly, Shian-Huey Chiang, Stuart J Decker, Louise Chang, Maeran Uhm, Martha J Larsen, John R Rubin, Jonathan Mowers, Nicole M White, Irit Hochberg, Michael Downes, Ruth T Yu, Christopher Liddle, Ronald M Evans, Dayoung Oh, Pingping Li, Jerrold M Olefsky, Alan R Saltiel. An inhibitor of the protein kinases TBK1 and IKK-ɛ improves obesity-related metabolic dysfunctions in mice. Nature Medicine, 2013; DOI: 10.1038/nm.3082
Courtesy: ScienceDaily
No comments:
Post a Comment