The ability to distinguish and isolate rare cells from among a large
population of assorted cells has become increasingly important for the
early detection of disease and for monitoring disease treatments.
Circulating cancer tumor cells are a perfect example. Typically,
there are only a handful of them among a billion healthy cells, yet they
are precursors to metastasis, the spread of cancer that causes about 90
percent of cancer mortalities. Such "rogue" cells are not limited to
cancer -- they also include stem cells used for regenerative medicine
and other cell types.
Unfortunately, detecting such cells is difficult. Achieving good
statistical accuracy requires an automated, high-throughput instrument
that can examine millions of cells in a reasonably short time.
Microscopes equipped with digital cameras are currently the gold
standard for analyzing cells, but they are too slow to be useful for
this application.
Now, a new optical microscope developed by UCLA engineers could make the tough task a whole lot easier.
"To catch these elusive cells, the camera must be able to capture and
digitally process millions of images continuously at a very high frame
rate," said Bahram Jalali, who holds the Northrop Grumman Endowed
Opto-Electronic Chair in Electrical Engineering at the UCLA Henry
Samueli School of Engineering and Applied Science. "Conventional CCD and
CMOS cameras are not fast and sensitive enough. It takes time to read
the data from the array of pixels, and they become less sensitive to
light at high speed."
The current flow-cytometry method has high throughput, but since it
relies on single-point light scattering, as opposed to taking a picture,
it is not sensitive enough to detect very rare cell types, such as
those present in early-stage or pre-metastasis cancer patients.
To overcome these limitations, an interdisciplinary team of
researchers led by Jalali and Dino Di Carlo, a UCLA associate professor
of bioengineering, with expertise in optics and high-speed electronics,
microfluidics, and biotechnology, has developed a high-throughput
flow-through optical microscope with the ability to detect rare cells
with sensitivity of one part per million in real time.
This technology builds on the photonic time-stretch camera technology
created by Jalali's team in 2009 to produce the world's fastest
continuous-running camera.
In the latest issue of the journal Proceedings of the National Academy of Sciences,
Jalali, Di Carlo and their colleagues describe how they integrated this
camera with advanced microfluidics and real-time image processing in
order to classify cells in blood samples. The new blood-screening
technology boasts a throughput of 100,000 cells per second,
approximately 100 times higher than conventional imaging-based blood
analyzers.
"This achievement required the integration of several cutting-edge
technologies through collaborations between the departments of
bioengineering and electrical engineering and the California NanoSystems
Institute and adds to the significant technology infrastructure being
developed at UCLA for cell-based diagnostics," Di Carlo said.
Both Jalali and Di Carlo are members of the California NanoSystems Institute at UCLA.
Their research demonstrates real-time identification of rare breast
cancer cells in blood with a record low false-positive rate of one cell
in a million. Preliminary results indicate that this new technology has
the potential to quickly enable the detection of rare circulating tumor
cells from a large volume of blood, opening the way for statistically
accurate early detection of cancer and for monitoring the efficiency of
drug and radiation therapy.
"This technology can significantly reduce errors and costs in medical
diagnosis," said lead author Keisuke Goda, a UCLA program manager in
electrical engineering and bioengineering.
The results were obtained by mixing cancer cells grown in a
laboratory with blood in various proportions to emulate real-life
patient blood.
"To further validate the clinical utility of the technology, we are
currently performing clinical tests in collaboration with clinicians,"
said Goda, also a member of the California NanoSystems Institute. "The
technology is also potentially useful for urine analysis, water quality
monitoring and related applications."
The study was funded by the U.S. Congressionally Directed Medical
Research Programs (CDMRP) and by NantWorks LLC and the Burroughs
Wellcome Fund.
Journal Reference:
- K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, B. Jalali. High-throughput single-microparticle imaging flow analyzer. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1204718109
Courtesy: ScienceDaily
No comments:
Post a Comment